Integral Points for Drinfeld Modules

نویسنده

  • DRAGOS GHIOCA
چکیده

We prove that in the backward orbit of a nonpreperiodic (nontorsion) point under the action of a Drinfeld module of generic characteristic there exist at most finitely many points S-integral with respect to another nonpreperiodic point. This provides the answer (in positive characteristic) to a question raised by Sookdeo in [26]. We also prove that for each nontorsion point z there exist at most finitely many torsion (preperiodic) points which are S-integral with respect to z. This proves a question raised by Tucker and the author in [13], and it gives the analogue of Ih’s conjecture [3] for Drinfeld modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution and Integral Points for Drinfeld Modules

We prove that the local height of a point on a Drinfeld module can be computed by averaging the logarithm of the distance to that point over the torsion points of the module. This gives rise to a Drinfeld module analog of a weak version of Siegel’s integral points theorem over number fields and to an analog of a theorem of Schinzel’s regarding the order of a point modulo certain primes.

متن کامل

Equidistribution for Torsion Points of a Drinfeld Module

We prove an equidistribution result for torsion points of Drinfeld modules of generic characteristic. We also show that similar equidistribution statements would provide proofs for the Manin-Mumford and the Bogomolov conjectures for Drinfeld modules.

متن کامل

Torsion bounds for elliptic curves and Drinfeld modules

We derive asymptotically optimal upper bounds on the number of L-rational torsion points on a given elliptic curve or Drinfeld module defined over a finitely generated field K, as a function of the degree [L : K]. Our main tool is the adelic openness of the image of Galois representations attached to elliptic curves and Drinfeld modules, due to Serre and Pink-Rütsche, respectively. Our approach...

متن کامل

The André-Oort conjecture for products of Drinfeld modular curves

Let Z = X1×· · ·×Xn be a product of Drinfeld modular curves. We characterize those algebraic subvarieties X ⊂ Z containing a Zariski-dense set of CM points, i.e. points corresponding to n-tuples of Drinfeld modules with complex multiplication (and suitable level structure). This is a characteristic p analogue of a special case of the André-Oort conjecture.

متن کامل

Change of Coefficients for Drinfeld Modules, Shtuka, and Abelian Sheaves

We study the passage from Drinfeld-A-modules to Drinfeld-A-modules for a given finite flat inclusion A ⊂ A. We show that this defines a morphism from the moduli space of Drinfeld-A-modules to the moduli space of Drinfeld-A-modules which is proper but in general not representable. For Drinfeld-Anderson shtuka and abelian sheaves instead of Drinfeld modules we obtain the same results. Mathematics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013